My Personal Evolution

6/10/21

Finding and Fixing
Design Debt

Rick Kazman

University of Hawaii

SAAM (1994)
ATAM (1998)
CBAM (2001)

My Personal Evolution

My Personal Evolution

When you can measure what you are
speaking about, and express it in numbers,
you know something about it; but when
you cannot express it in numbers, your
knowledge is of a meager and
unsatisfactory kind; it may be the
beginning of knowledge, but you have
scarcely, in your thoughts, advanced to the
stage of science.

- William Thompson, Lord Kelvin

There is no sense in being precise
when you don't even know what
you're talking about.

--John von Neumann

6/10/21

6/10/21

My Focus Today

* Automated SE

* Empirical studies

* Reproducibility

* Industrial relevance
» Usability

In theory, there is no difference between theory and practice. In
practice, there is. - Yogi Berra

My Focus Today

Finding and Fixing Design Debt

6/10/21

The State of the Practice

The State of the Practice

* The boat is leaking but you keep paddling!
 Why?

* The illusion of progress.

* The lack of measurements.

* Design is largely invisible.

6/10/21

Architecture/Design Flaws
—— 7, Wl

My "Grand Research Challenge"

* How to measure the health of an architecture?
* Can this be:

e Automated?

* Empirically justified?

* Repeatable?

Isn't This a Solved Problem?

* Just use existing TD detection tools, e.g.

structure101 N - @
Rl sonaraube \ [l [3 Designite

Sadly, no...

* Results of a recent study:

* TD detection tools disagree about basic (seemingly)
objective measures due to different definitions of
fundamental concepts.

* The majority of what is reported by these tools is no more
insightful than LOC.

[Lefever et al. ICSE 2021]

6/10/21

There is Hope

* Introducing

https://archdia.com/

Empirical Basis

>300 Open Source Projects

>50 Industrial projects

6/10/21

6/10/21

DV8 Work Flow

Step 1: Data Collection Step 2: Automated Analysis Step: Collect Feedback

Code dependency, history, Measurement, hotspot Surveys and Interviews

issue records detection, cost calculation with practitioners

Step 1: Data Collection Step 2: Automated Analysis DV8 Tool Suite Step 3: Collect Feedback

3.DL& PC
1. SDSM Generator b 8. Report
alcutator Generator

l O
Depends
6. Archissue Cost
Quantification _
Surveys
File Dependency

Report

5. ArchRoot
History DSM Detector

7. Arch Debt Interviews
II Quantification
Bug Report

' SN B N .. :

Input Output

Input files Output files 3rd-party Tool Metrics Hotspot Quantification

Step 1: Data Collection

Dependency information

@ ¥) History information

v , Issue information

Design Rule Space (DRSpace)

o , ADRSpace is composed of a meaningful subset of a system’s
files and the architectural connections among these files.

* Any subset of files may form a design space

* Architectural connections D e s
* Structural couplings: call, inherit, aggregate, etc.
* Evolutionary couplings

* Implicit or explicit

[Xiao et al, TSE 2018]
[Xiao et al, ICSE 2014]

6/10/21

6/10/21

Design Rule Space (DRSpace)

Non-trivial software system contain multiple design spaces:
* each feature implemented
* each pattern applied
* each concern addressed

> | Each file can participate in multiple DRSpaces

Architectures can be modeled as overlapping DRSpaces

We visualize each DRSpace as a Design Structure Matrix (DSM)

Components

Components

Component
Interactions

10

6/10/21

Communications

ies

t

ivi

Act

Information

SaIAY

11

6/10/21

Step 2: Automated Architecture Analysis

Step 2.1 Measure and Monitor Step 2.2: Pinpoint Hotspots Step 2.3: Quantify Design Debt

Compare, Contrast, and Monitor Detection and Visualization Costs and benefits

Step 2.1: Measure and Monitor

Decoupling Level (DL):
an options-based metric, measuring the system’s ability to
generate options

Propagation Cost (PC):

a DSM-based metric, measuring how tightly coupled a system is

[Mo et al. ICSE 2016]

6/10/21

Decoupling Level (DL): Rationale

A true module should be
e Small
* Independent

A highly modularized system should
* Have large numbers of true modules...
* connected by design rules

[Mo et al. ICSE 2016]

De cou pllng Level (DL) The more files are clustered into true

modules, the higher the value

1 Ul_java

Upper Layer modules: .
* The fewer dependents, the 4 Survey_java

higher the value 5 SaveLoadFile_java
* The smaller the module, the 6 TextFileUl_java

higher the value 7 CommandLineUl_ja
8 Letters_java
9 Match_java

on_java

True modules:

* The smaller a true module,
the higher the value

* The more true modules, the
higher the value

13 EssayAnswer_java
14 Written_java

15 Test_java

16 AnswerSheet_java

[Mo et al. ICSE 2016]

13

6/10/21

Decoupling Level (DL) and Propagation Cost (PC)

Cumulative Distribution

Min. PC: 1.8% Min. DL: 14.0%
Max. PC: 72.1% Max. DL: 92.8%
B _‘\ Avg. PC: 20.6% Avg. DL: 58.7, At
. 80t Pt, 80" Pt,
\fc: 7.7% DL: 74.9%

e
%

e
o

Data from 129

projects:

* 108 open source —"

* 21 industrial 38190 __ 20pt,
DL: 45.9%

\
», 50" Pt, 50t Pt
\PC: 18.4% DL: 57.4%

\

Percentile (Pt)
o
-

DL and PC values

[Mo et al. ICSE 2016]

DL and PC "Health Chart"

Open Source Commercial
DL PC DL PC
Avg 60 20 54 21
Median 58 18 56 20
Max 92 72 93 Best DL (93%) is from
Min 14 p) 15 Ly
20th Pt 47 3 36 \;\;c;r;tslz::::%) is from
40th Pt 55 14 46
60th Pt 66 21 59
80th Pt 75 34 65
Pt: Percentile

14

6/10/21

DL and PC "Health Chart"

=) Anindustrial project:

DL: 29%, 10th percentile: Confirmed to have severe maintenance difficulty

il
09
08
07
06
05
04
03

02
01 10t percentile

(0]
04 06

Decoupling Level

Evolutionary Monitoring

O Non-trivial variation in DL indicates major architecture variation

* Anindustrial project: 6 years, 29 releases, 1082-1852 files

123456 7 8 91011121314151617181920212223242526272829

15

6/10/21

Step 2.2: Flaw Detection

v, We automatically identify 6 types of design flaws
1. Unstable interface
Modularity violation

9’ Crossing

Improper inheritance
Cliques among files
Package cycles

These flaws are highly correlated with bugs, changes,
and churn

[Mo et al. WICSA 2015]

Flaw Type 1: Unstable Interface

1 config.DatabaseDescriptor
2 utils.FBUtilities
3 utils.ByteBufferUtil ,14 b
4 service.WriteResponseHandler (4) dp,22

5 locator.TokenMetadata 4 ((5) ,10 dp,24
6 locator.NetworkTopologyStrategy ,6 ,6 |dp,4 '(6) ,10 ih,22

7 service.DatacenterWriteResponseHandler |dp,14 ih,18 ,10 dp,10((7) ,20

8 locator.AbstractReplicationStrategy ,36 dp,22 ag,24 dp,20 '(8)

9 config.CFMetaData ,118 dp,10, A ,36
10 dht.RandomPartitioner dp,20 ,8 A
11 utils.GuidGenerator 4
12 io.sstable.SSTable dp,4 (12) |4 |dp,68
13 utils.CLibrary 4 [(13) |12
14 io.sstable.SSTableReader dp,10 ih,68 dp,12|(14)
15 cli.CliClient d dp,26 ,6
16 locator.PropertyFileSnitch
17 dht.OrderPreservingPartitioner
18 thrift.ThriftValidation

16

6/10/21

Flaw Type 2: Crossing

1 pathl.Filel h
2 pathl.File2 h
3 pathl.File3 h 2 2

4 path2. Filel h f AR

5 path2. File2 h ,3.,210,10,6

6 path2. File3_h 6)d, 2,2 ,3

7|path3. Filel h d2lml2 .21,

8 path3. File2 ¢ 4,24,278) ,6 4,5

9 path3. File3 ¢ d,34d,2d,679 ,8
10|path4. Filel c d,2d,24,5d, 8710
i lpaehd. Fileo: @ an, .7
12 path4. File3_c 9 "(12)
13 path5. Filel c 4d,7d 13

Flaw Type 3: Modularity Violation

1 path1.Bean javal
2 path2.Pear_javal

3 path3FirstFruit java|
4 pathdSecondFruit java| Create,
5 pathd.ThirdFruit_java| Create,
6
7
8

pathé FourthFruit_java| Create,
paths FifthFruit_javal
paths.Pear_javal

9 paths Firstluice java
10 pathsSecondduice java| |, P L
" pathsSixthFruit javal [, T 123456780910 M 121 1415
:i F“‘"ﬁ:‘{'::::"‘i:?““ 1 pathBean javal_ (1) |, A0, M0, , ,
aths EighthFruit javal ; _{7—'
14 :ath.NiiemFmiljxva 2 path2Pear joval @, L L .
3 path3FirstFritjava 0 [L[@], , , 8, .
4 pathd SecondFruit java| Create, | , [[10 8] , . .
5
6
7

15 pathsTenthFruit javal
16 paths EleventhFruit_javal
17 path5.TwelvethFruit_j s s pathd.ThirdFruit_javalCreate,10] , [, [1078) .|, .,
18 aths ThirteenthFruit java) |, , ., , 16 pathdFourthFruit javal Create, | [, |8 . T0)., . .
19ath5.FourteenthFruit_java| . s path5.FifthFruit_javal , NEE .8, 12,16 14 16 10
20 path6FirstFood java| B] path.Pear_javal . .00 L.
21 pathl.SecondFood javal , © v+ 9 pathSFistluice java . [, . . .98 , 0,00 , 12 8,
pathg.ThirdFood java| , + + 10 path5SecondJuice java| allo o o 0 4 o 1008,
path? Apple.javal 11 path5SixthFruit java| olle o o ollo 0 0 o E L
24 pathdFourthFood javal Create, , , , , , , . , . g path5.SeventhFruit java| 8 . 0 L2, 0, T12) 14 10 12 10 10
patnS FithFood java) Create, , 13 pathsEighthFruitjaval . |, [8 . . .[46 . 40 ., 14713) 14 16 10 10
path10FirstFig_javalCast lse, 14 pathsNinethFruitjaval , [,|, . , [, ., . . 0 14714 14 20 8 ,
path?.SecondFig_java|Ce &
15 pathSTenthFruit java| 8 |.8[10 8 , ,[16 , 12,10 10 12 16 14715) 14 14
16 pathsEleventhFruit javal 8 |, [10 8 , ,|1010 .8 8 , .10 10 10 14716 12 ,
17 paths.TwelvethFruit java| , |, [.8 . . .10, 10, . 10,10 8 14 1277
18)aths. ThirteenthFruit java| |, . ., ,[8 , 12, uses 0 0 , 0 , ,
19 aths FourteenthFruit java| , |, a0 L 8 1010 44 8 2 0 0 o 0 0o
20 pathéFirstFood_java| 5 s s s o0, e , 808 8],
21 path7SecondFood javal ., | Use T2, e,
path8.ThirdFood javal ., L, L s . |Uses T2,
pathTApplejaval . L L . . . e |usedo g4, T23)
24 pathdFourthFood javal Create8 , , . , , . , 8
path FifthFood_java| Create,
path10.FirstFig_java|Cast,Use,
path2 SecondFig_java|Cast,

17

Sample Flaws from JBoss

$SRelationDataManager

UB ybBrag

CascadeDeleteStrategy

JDBCCMRFieldBridge

JDBCDeleteRelationsCommand
JDBCPostCreateEntityCommand
g JDBCStopCommand
JDBCRemoveEntityCommand
10 JDBCStartCommand
11 JDBCLoadRelationCommand

13 JDBCStoreManager

14 JDBCAbstractQueryCommand
15 JDBCEJBQLCompiler

16 RelationData

17 RelationPair

18 SLeftJoinCMRNode

19 RelationSet

20 SCMRChainLink

aq, |aq.14 |aq.20 |aq.17 |aq.19 laqg
(11 113 |14 [23 |
16 |22 |

Jboss JDBCCMRFieldBridge DRSpace

Sample Flaws from Cassandra

1 cassandra.config.DatabaseDescriptor 14
2 cassandra.utils.FBUtilities AN 40

3 cassandra.utils.ByteBufferUtil |,14 ‘ ip,40
4 cassandra.service.\WriteResponseHandler |,10 ‘ ip,4
5 cassandra.locator. TokenMetadata |,10 ‘ 6

6 cassandra.locator.NetworkTopologyStrategy |,6 ‘ ip,10
7 cassandra.service.DatacenterWriteResponseHandler, |dp,14‘ 1p,6
8 cassandra.locator.AbstractReplicationStrategy |,36 ‘ ip,12
9 cassandra.config.CFMetaData |,118 ‘ ip,38
10 cassandra.utils.GuidGenerator | ‘ ip,12
11 cassandra.dht.RandomPartitioner |,12 ‘ ip,28
12 cassandra.utils.CLibrary |,12 ‘ ip,14
13 cassandra.io.sstable.SSTable |,16 ‘ 8

14 cassandra.io.sstable.SSTableReader |dp,42‘ 24
15 cassandra.cli.CliClient |,52 ‘ 1p,46
16 cassandra.thrift. ThriftValidation |dp,30‘ 28
17 cassandra.dht.OrderPreservingPartitioner |dp,18‘ ip,18

18 cassandra.locator.PropertyFileSnitch |,4 ‘1p,6 ;

10
6

4

12|
dp,68

(14)

2
|

4

6/10/21

18

Do Design Flaws Really Matter?

Research Question: If a file is involved in greater numbers of architecture
issues, it is more error-prone/change-prone than average files?

[Mo et al. WICSA 2015]

DEICINIE

MWMMM

Avro 1.7.6 47

Camel 2.11.1 53
Cassandra 1.0.7 24
CXF 2.7.10 70
HBase 0.94.16 70
Ivy 2.3.0 52
OpenlJPA 2.2.2 68
PDFBox 1.8.4 46
Wicket 1.5.5 57

Commercial 9

46
46
92
21
11
17
13
55
13

1480
17706
6738
27247
14858
3799
6736
1798
18004
6000

630

2326
3645
3400
5032
839

1574
1279
3359
800

145-298
528-1203
419-786
1426-3073
347-2142
418-607
1216-1761
458-589
1099-1549
137-599

6/10/21

19

6/10/21

Analysis

We counted the architecture flaws in these 10 projects and compared these to:
* Bug frequen
Bug churn
Change frequen

Change churn

Results

Avro-1.7.6 Camel-2.11.1 Cassandra-1.0.7
BC_avg | CF_avg BC_avg | CF_avg BC_avg | CF_avg
37 . .. 7.9 22 . 7.1 1.0
39 18.5 5.6 B 17.4 4.8
12.6 . § 56.6 14.4 £ 84.5 212
1245 . 141.5 339 2458 45.7
2550 . . 204.7 50.9 K 364.9 65.7

0.89 0.96 0.97 0.96
CXF-2.7. Hadoop-2.2.0 HBase-0.94.
BC_avg = I BC_avg | CF_avg X BC_avg

21.0 X . . 127 1.0 . 10.4

62.3 . X 24.8 42 236.7

164.8 g g 173.6 13.8 418.5

390.9 B . 725.1 58.0 1335.1

890.2 X § 2379 26.8 23704

0.92 . . 0.63 0.72 0.94

Ivy-23.0 OpenJPA-2.2.2 Pdfbox-1.8.
BC_avg I L BC_avg | CF_avg BC_avg

45 B) 10.0 1.1 27.1

22.8 5) 311 3.7 359

54.6 . X 64.5 75 64.1

119.9 . . . 408.6 22.4 495.0

204.6 X g 981.0 52.5 669.5

0.96 I 0.88 0.90 0.92
Commercial Project
BC_avg | CF_avg

225 2.7

4.6 59

324 10.3

36.8 19.8

21 29.0

0.73 0.98

L E NG

0

>

| | wf 0| —| of 3|

(@]

20

6/10/21

Avro-1.7.6

#Flaws |BF_avg |BC_avg VCF_avg CC_avg

0.1 3.7 0.5
0.4 3.9 0.9
1.6 12.6 5.2
7.9 124.5 21.6
16.5 255.0 33.5
0.91 0.89 0.94

More Consequences of Design Flaws

Research Question: If a file is involved in greater numbers of architecture flaws,
it is involved in more security bugs/changes than average files?

[Feng et al. WICSA 2016]

6/10/21

Answer

We counted the architecture flaws in these 11 projects and compared these to:
* Security bug frequency
* Security change frequency

 ...as well as the original measures (bugs, changes, bug churn, change
churn)

Answer

il e el el
Correlation |Correlation Correlation
Avro 0.845 0.923 0.861
Camel 0.956 0.959 0.958
Cassandra 0.830 0.869 0.808
Chrome 0.987 0.988 0.979
CXF 0.896 0.910 0.939
Derby 0.938 0.917 0.897
Hadoop 0.752 0.902 0.862
HBase 0.894 0.932 0.961
httpd 0.710 0.688 0.885
PHP 0.929 0.987 0.923
Tomcat 0.901 0.776 0.920

22

46

Step 2.3: Quantification

@5

v

v

[Kazman et al. ICSE 2015]
[Xiao et al. ICSE 2016]

Calculate the costs of each root, each flaw and each
type of flaw

Calculate ROI (Return on Investment)

6/10/21

»
8 s DEerle s U 0 atlo
Do ed b A e Deb R O g pected
4 A B C D E F 1 J K s M N
DRSpace |[Norm urrent Norm Current Norm Tot LOC |Norm LOCBRefactor orm Exp |[Norm Exp Norm Exp

1 |DRSpace Leading File |Size Size efects/Yr |Defects |Ch /Yr |Changes/Yr [Changed |Ch d ost (PM) Befects/Yr |Ch /Yr [LOCCh d
2 Pear.java 139 119.33' 166 142.5 1068 839.2| 49,171 42,213 5t 39 346 20,281
3 Apple.java 158 133.83' 63 53.4 607 451.7| 25,603 21,686 44 388 22,745
4 Bean.java 65 37.83' 72 41.9 429 207.2| 17,807 10,364 il 12 110 6,429
5
6 | DRSpace Total 290.9! 237.8 1498 74,263 96.0 843.871 49,455
7 |Project Total 797 265 2332 135,453 1
8 |Savings 142 654 24,808
9
10
11 |Base defect rates 0.33 [

Base change rates 2.9 Exp PM save 41.35
13 |Base LOC/file 169.95 |

LOC/PM 600

e 00% RO e e ohe
a an et a 0

23

6/10/21

Industrial Experience: Analyzing 8 ABB Projects

v) Using 3 complementary techniques:
* Architecture-level maintainability metrics
* Architecture flaw analysis

* Cost and benefit analysis

v) 8 projects developed at multiple locations (India, USA,
Switzerland) differing in age, domain, and size.

v) We reported the results back to each project and collected feedback

[Mo et al. ASE 2018]

Collecting Feedback from ABB

RQ1: does the tool suite help to close the gap between management

and development? That is, does it help them to decide if, when, and
where to refactor?

RQ2: does the tool suite help practitioners understand the
maintainability of their systems relative to other projects internal to
the company, and relative to a more broad- based benchmark suite?

RQ3: does the tool suite help developers pinpoint the hotspots of
their systems, i.e., the groups of files with severe design flaws?

ABB: Metrics Scores and Rankings

Percentile

Percentile

#Files

85th
85th
81st
74th
49th
49th
43rd

85th
O8th
54th
83th
45th
41th
S2th

144
371
6,948
1,541
15,333
7,754
491

Sth

ABB: Hotspots Detected

Unstable Interface

File Cliques

Modularity Violations

Most error-prone files

CF Top

1 2 3| 4 5 67

1)
6

y
(
¢

2nd

4,125

8 910 1112 1314 15 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31

)
3

d8 |4 2
3 13 2
@ 2 2

da'e)| |2

@)

(5) 4 ’,4 d4

4 d2d[(8) 5
d,4 d,57(9)

S L 1

ii2 d5d10 d5dfH,

i2 3 |3
i2 d4 3
2 |d |d4|3 2
3 d2di126 2

d2 d,7d d8 dzaouo .z

6 4 2
3
3

3
3 .

g
2

213

3

3 |
2

2

4 3 3

3
2
3
2
i
6

2

2

@25 |
i,6 (23],

i,26 d.1q

6 |5 |7 ().
d.3¢d.4 d.59i,25i,10d.8 d.42

2 |2

g, oLy0 U uo o Q.9

RO p—

d6 3
db5 2

d4 d2d d

3
4
4
,8
q,
3

d6 d3 2 d,

3

2 2
2
.3 3

2 |2

6/10/21

25

6/10/21

ABB: Collecting User feedback

v , Surveys

¥ Interviews

ABB Post-Mortem: Surveys with Architects

Q1: What did the report reveal that you didn’t know about your software?

Q2: Are the metrics useful for reflecting the architecture of your software?

Q3: What did the architecture design flaws reveal about your software?

Q4: What actions have you planned as a result of the architecture design flaws report?
Q5: What did the architecture roots reveal about your software?

Q6: What actions do you plan to take to address architecture roots?

6/10/21

RQ1: does the tool suite help to close the gap between management and
development? That is, does it help them to decide if, when, and where to refactor?

Participants of all 8 projects verified that the information provided was useful in
closing the understanding gap with management. They have begun the refactoring
process.

Results

RQ2: does the tool suite help practitioners understand the maintainability of their
systems relative to other projects internal to the company, and relative to a more
broad- based benchmark suite?

" All participants said the report gave them quantifiable results with which to judge
their project. The comparison with industrial benchmarks made it clear that
maintenance difficulty caused by degrading architecture is common.

6/10/21

RQ3: does the tool suite help developers pinpoint the hotspots of their
systems—that is, the groups of files with severe design flaws?

Six of the eight projects planned to or already started refactoring to address
the detected flaws. The project with the lowest DL score is undergoing a
major rewrite.

Industrial Experience: Huawei

* Developed a set of architecture measures based on DL and
architecture flaws

* Adopted as a corporate standard
* Now used in over 100 projects
* Quantified architecture debt

* 24 out of 29 projects studied showed a positive correlation between
these measures and productivity

[Wu et al. ECSA 2018]

6/10/21

Industrial Experience: BrightSquid

Analyzed BrightSquid's secure communication platform (6/16 — 5/17)

Identified many areas of architecture debt—the "before" state—and
recommended a refactoring plan to pay down the debt (7/17)

Architecture was refactored (1/18 —3/18)
Analyzed the "after" state (3/18 — 8/18)

[Nayebi et al. ICSE 2019]

General information Before After
of files 1713 711
BﬂghtSq uid # of roots covering 80% of bugs 5 3
of files in roots covering 80% of bugs 296 295
Resu |tS # of files covering 80% of bugs 17% 37%
Architectural Metrics Before After
Decoupling level 86% 83%
Propagation cost 6% 6%
Architectural flaws Before After
of cliques 17 10
of files influenced by cliques 71 26
of unhealthy inheritance 60 30
of files influenced by unhealthy inheritance 222 102
of unstable interface 12 8
of files influenced by unstable interface 471 59
of crossings 29 6
of files influenced by crossings 387 47
of package cycles 34 19
of files influenced by package cycles 242 94

29

Industrial Experience: BrightSquid

The refactoring activities were recorded as 106 change requests, which
consumed 563.8 person hours.

After refactoring, the size of the code base shrunk by 41.5%

The average time needed to close issues before and after refactoring was
reduced by 72%.

The average bug-fixing churn per issue dropped by 2/3: from 102 LOC before
refactoring to 34 LOC after refactoring

The average bug-fixing duration reduced 30%, dropping from 10 days before
to 7 days

Lessons Learned

* There is enormous design debt in today's software.
* Yes, in your software.
* That's the bad news.

* The good news: we can do something about it.

6/10/21

6/10/21

Lessons Learned

* The good news: It is possible to automatically and
objectively assess and quantify architecture quality — to
find and fix the debt.

* And it is possible to bridge the gap. These results were
enthusiastically received by the industrial projects.

* Most projects are embarking on major refactorings.

 Several companies have incorporated DV8 into their
development processes/pipelines.

Final Thoughts

You can't manage it if you don't measure it. Quantification is key.

If the measurement is not automated it won't be done, or won't be
repeatable.

Incorporating these techniques into the build process ensures rapid
feedback with supporting data.

This measurement, detection, and quantification practice leads to
improved architectures.

Results must be accompanied by ROl measures, to aid in adoption.

You can get the software—free for academic use—at: https://archdia.com/

6/10/21

Thank You!

32

6/10/21

Acknowledgments

| owe a huge debt of gratitude to my co-authors, without whom
none of this would be possible.

* Special thanks to:

* Yuanfang Cai = o"E I"]ESJ

* Lu Xiao i

. ' SlMPlY '.‘

Qiong Feng
Jason Lefever

Humberto Cervantes ENDA P“ESE"“‘"ON WITHOUTA
THANKYOU SLIDE =

memegenerator.net

References

[Lefever et al. 2021] Jason Lefever, Yuanfang Cai, Humberto Cervantes, Rick Kazman, Hongzhou Fang, “On the Lack of
Consensus Among Technical Debt Detection Tools”, ICSE 2021 SEIP

[Xiao et al. 2014] Lu Xiao, Yuanfang Cai, Rick Kazman, "Design rule spaces: a new form of architecture insight", ICSE 2014:
967-977

[Kazman et al. 2015] Rick Kazman, Yuanfang Cai, Ran Mo, Qiong Feng, Lu Xiao, Serge Haziyev, Volodymyr Fedak, Andriy
Shapochka, "A Case Study in Locating the Architectural Roots of Technical Debt", ICSE 2015: 179-188

[Mo et al. 2016] Ran Mo, Yuanfang Cai, Rick Kazman, Lu Xiao, Qiong Feng, "Decoupling level: a new metric for
architectural maintenance complexity", ICSE 2016: 499-510

[Mo et al. 2018] Ran Mo, Will Snipes, Yuanfang Cai, Srini Ramaswamy, Rick Kazman, Martin Naedele: " Experiences
Applying Automated Architecture Analysis Tool Suites”, ASE 2018.

[Mo et al. 2019] Ran Mo, Yuanfang Cai, Rick Kazman, Lu Xiao, and Qiong Feng: "Architecture Anti-patterns: Automatically
Detectable Violations of Design Principles”, IEEE Transactions on Software Engineering, 2019

[Nayebi et al. 2019] Maleknaz Nayebi, Yuanfang Cai, Rick Kazman, Guenther Ruhe, Qiong Feng, Chris Carlson, Francis
Chew: "A Longitudinal Study of Identifying and Paying Down Architectural Debt”, ICSE SEIP 2019.

[Feng et al. 2019] Q. Feng, Y. Cai, R. Kazman, D. Cui, T. Liu. H. Fang. "Active Hotspot: An Issue-Oriented Model to Monitor
Software Evolution and Degradation”, ASE 2019.

